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Simulations of a mortality plateau in the sexual Penna model for biological aging
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The Penna model is a strategy to simulate the genetic dynamics of age-structured populations, in which the
individual genomes are represented by bit strings. It provides a simple metaphor for the evolutionary process
in terms of the mutation accumulation theory. In its original version, an individual dies due to inherited
diseases when its current number of accumulated mutations, n, reaches a threshold value 7. Since the mean
number of diseases increases with age, the probability to die is zero for very young ages (n<<T) and equals 1
for the old ones (n=T). Here, instead of using a step function to determine the genetic death age, we test
several other functions that may or may not slightly increase the death probability at young ages (n<<T), but
that decrease this probability at old ones. Our purpose is to study the oldest old effect, that is, a plateau in the
mortality curves at advanced ages. By imposing certain conditions, it has been possible to obtain a clear plateau
using the Penna model. However, a more realistic one appears when a modified version, that keeps the
population size fixed without fluctuations, is used. We also find a relation between the birth rate, the age
structure of the population, and the death probability.
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I. INTRODUCTION

The mechanism of aging is still an important task of re-
cent research and the mutation accumulation hypothesis is
one of the most acceptable theories. The mortality can be
measured by the so called mortality function

u(x) =—dIn[S(x)]/dx, (1)

where S(x) is the probability to survive from birth to age x.
In the 19th century Gompertz found that the mortality func-
tion increases exponentially with age. Less or more pro-
nounced decreases of this exponential growth of mortality at
old ages, also known as the oldest old effect, have been
observed in humans and mainly in flies [1].

The Penna model [2,3] is one of the most popular models
for biological aging, which has been successfully applied to
reproduce the Gompertz law [2,4], to study the preference
for sexual rather than asexual reproduction [5] and more re-
cently, to study sympatric speciation [6—8]. Its asexual ver-
sion was solved analytically by Coe et al. [9], who showed
that the replacement of a sudden death rule after the accu-
mulation of T deleterious mutations (step function) by a
probability to survive given by a Fermi function leads to a
plateau in the mortality curve. Numerically, only a very short
plateau was observed before [10,11].

In our simulations of the original sexual Penna model, we
obtain that when the genetic death probability at advanced
ages is given by a smooth function instead of the usual step
function, but is greater than zero at very young ages, the
birth rate has to be greatly increased to avoid population
meltdown. In this case it is very difficult to measure the
oldest old effect, since very few individuals survive until old
ages. A small plateau has been observed by imposing a death
probability equal to zero for very young ages (n<<T), as in
the original Penna strategy.
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By using a model where the population size is constant
without fluctuations, we obtain a very clear plateau in the
mortality curves, even considering nonzero values for the
probability to die at young ages. We also obtain that the age
distribution of the population changes dramatically accord-
ing to the smoothness of the death probability functions at
old ages.

In Sec. II the original Penna model is briefly explained,
the genetic death probability functions that are used in order
to study the oldest old plateau are introduced, and the corre-
sponding results are presented. In Sec. III we describe the
model in which the population size is kept constant and show
the results obtained for the same death probability functions
of the previous section. In Sec. IV we present the conclu-
sions.

II. THE PENNA MODEL FOR SEXUAL POPULATIONS

In this section only a short description of the Penna model
is given. A more detailed one can be found in [3]. In the
original version of the model two strings of 32 bits that are
read in parallel represent the diploid genome of an indi-
vidual. A deleterious mutation is defined by two set bits at
the same position of both strings or by a single set bit at a
dominant position. At the beginning of the simulation a fixed
number of dominant positions are picked and positioned
without bias along the genome and remain fixed during the
whole process. At every iteration or “year” one more bit
position becomes active and the corresponding individual be-
comes one year older. It dies for genetic reasons if its current
number of deleterious mutations reaches the threshold 7,
which corresponds to the following genetic death probability

fn):
f(n)=0(m-T), (2)

where n is the current number of deleterious mutations and
O(x) is the step or Heaviside function. In order to limit the
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population size P, an additional death probability V
=P(t)/ P, the so called Verhulst factor, is used to keep the
population size below P,.. It is applied to each individual
independently of its age or genome.

At every iteration, any female with age equal to or above
the minimum reproduction age R randomly chooses a male,
also with age =R, to breed and generate b offspring. To
construct one offspring genome first the two bit strings of the
mother are cut in a random position (crossing), producing
four bit-string pieces. Two complementary pieces are chosen
to form the female gamete (recombination). Finally, one del-
eterious mutation is randomly introduced. The same process
occurs with the male’s genome, producing the male gamete.
These two resulting bit strings form the offspring genome.
The sex of the baby is randomly chosen, with a probability
of 50% for each one. This whole strategy is repeated b times
to produce the b offspring.

A. Approximations to the step function

We use the following approximations of the step function,
in order to smooth the original genetic death rule, applied at
every iteration, of killing the individual after the accumula-
tion of exactly 7" deleterious mutations:

1

e—2p(n—T)/32 ’ (3)

Fermi-like function f(n) = 1
+

arctan|2p(n—T7)/32] 1
Arctangent function  f,(n) = 2p(n=1) ]+ =

b}

(4)

Error function  f5(n) = %{erf[p(n -7)/32]+1}, (5)

where 7 is the number of active deleterious mutations and p
is a parameter that controls the smoothness of the approxi-
mations. When the value of p increases, the death probabili-
ties given by Egs. (3)—(5) converge to the one given by the
step function [Eq. (2)]. Observe that what we call a Fermi
like death function is in fact one minus a Fermi function.

Figure 1 compares the three approximations with p=1
and also the Fermi-like function with p=10, with the step
function death probability.

B. Results

In simulations of N time steps, the mortality function
m(a) is measured over the last N,, time steps, in the follow-
ing way:

N
> Dyy(ta+1)
m(@)=-Inf 1- " |, (6)

> P(t,a)

1=N,,

where Dg,(f,a) is the number of genetic deaths (not pro-
duced by Verhulst) at age a and time step 7, and P(z,a) is the
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FIG. 1. Death probabilities according to the different approxi-
mations of the step function given by Egs. (3)—(5), versus the num-
ber of accumulated diseases. The parameter p controls the smooth-
ness of the functions. The step function case [Eq. (2)] is presented
for comparison. Notice that for p=1 there is a finite probability for
the very young (small n) to die, but the probability for the older to
die is smaller than that given by the step function. For p=10, the
behavior of the Fermi-like death probability becomes almost
equivalent to the step function one.

number of individuals with age a at time step .

In all simulations that follow, the values of the parameters
are 7=3, R=10, b=1, P,,=200000, N=100000, N,
=50000, and the number of randomly chosen positions
where the bits 1 are dominant is five.

The mortalities obtained using any of the death probabili-
ties given by Egs. (3)—(5) with p= 10 are equivalent to those
obtained with the traditional step function, that is, no plateau
appears. Smaller values of the smoothness p lead to popula-
tion meltdown. This can be avoided by increasing the birth
rate b to very high values (b>100 for p<<1), which pro-
duces strong fluctuations in the population size, making it
very difficult to observe a plateau. In fact, to observe a pla-
teau in such conditions it was necessary to decrease the mini-
mum reproduction age from R=10 to 8 and also to work with
very large populations (about one million individuals) to
avoid the fluctuations just mentioned and to have good sta-
tistics for the oldest old. We emphasize that in the original
Penna model, considering only bad mutations, there is a
minimum birth rate to avoid population meltdown, but no
upper limit for it. However, a chaotic behavior as in the
logistic map was found for high birth rates with a minimum
reproduction age lower than the threshold 7' [12]. Neverthe-
less, the stronger selection is, the larger is the minimum birth
rate. Another strategy to avoid population meltdown (p<<1)
is to set R=1, which was used in [9] to obtain the plateau.

In order to obtain the mortality plateau without restricting
the minimum reproduction age R, we set all values of the
death probability f(n) to zero for n<T. In this way the birth
rate b=1 does not need to be increased, and the mortality for
different values of p is shown in Fig. 2, where the death
probability is the one of Eq. (3). For young ages the mortal-
ity function follows the Gompertz law.

Now a nice plateau can be observed, similar to the results
in [9]. Its length depends on the smoothness p. The different
death probabilities of Egs. (4) and (5), also setting to zero the
genetic deaths for n <7, yield similar mortality functions, as
shown in Fig. 3.
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FIG. 2. Comparing the mortality functions for different values
of p, using a Fermi-like death probability function. The results for
small values of p are similar to those of the analytically solved
asexual model.

III. MODEL WITH CONSTANT POPULATION

In order to study the population age structure using the
death probabilities of Egs. (3)—(5), but without neglecting
deaths for n <T, we have implemented the sexual version of
a model with constant population, introduced in [13]. This
model has the advantages of avoiding the Verhulst factor
already criticized by some biologists [14] and preventing
chaotic fluctuations of the population size. The only differ-
ence between this model and the Penna one is that whenever
an individual dies for genetic reasons, a male and a female
are randomly chosen to mate and produce an offspring. So
the population size does not fluctuate, since there is no Ver-
hulst factor, and the measured data are much cleaner. Addi-
tionally, the birth rate is controlled automatically and popu-
lation meltdown or unlimited growth 1is prevented.
Nevertheless, the simulation can break down if there are no
individuals older than the minimum reproduction age, which
occurs for p<1 as well as for too small populations. The
population size (200 000 individuals) and simulation time
(1 000 000 time steps) have to be large, to produce a mortal-
ity function which ranges up to old ages. The genetic deaths
and the age distribution are measured over the last 500 000
time steps.

Figure 4 shows that the mortality functions do not differ
very much from the ones measured with the modified Penna
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FIG. 3. Comparing the tails of the mortality for different death
probability functions. They differ only slightly for different func-
tions. Individuals with n<7T do not suffer genetic death.
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FIG. 4. Mortality functions using the constant population model
with the Fermi-like death probability function, for different values
of p. At young ages there is no Gompertz law for small p, due to the
non-negligible genetic deaths for n<T.

model of Sec. II, Fig. 2, for old ages. But with decreasing
values of p the mortality increases considerably at young
ages. The exponential growth is replaced by an almost con-
stant behavior until the minimum reproduction age. The mor-
tality functions do not vary qualitatively for the different
approximations of the step function (Fig. 5), as already ob-
served in the simulations of the Penna model.

Interestingly, we observe a change in the curvature of the
population age distribution, depending on the value of
p—Fig. 6. The smoother the death probability is, the smaller
is the mean age of the population. Most of the individuals die
at young ages before reaching the age of reproduction. The
birth rate increases crucially in order to maintain the popu-
lation constant. The very few individuals who reach ad-
vanced ages can live very long. The really small number of
these individuals explains why the mortality plateau is not
observed for small populations or short simulation times.
Thus, the fluctuations of the values of the mortality function
at very old ages, shown in Fig. 5, are due to poor statistics.

IV. CONCLUSION

With our sexual simulations we reproduce the asexual re-
sults of [9], by implementing a Fermi-like death probability
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FIG. 5. Comparison between the mortality functions of different
smooth death probabilities using the constant population model, in
linear scale. The plateau appears for all of them. The fluctuations of
the mortality functions for ages above 24 result from weak
statistics.
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FIG. 6. The population density changes its curvature for small p.
Only few individuals reach old ages.

function in the Penna model. The main differences between
this model and the asexual model of [9] are that there, repro-
duction begins at birth, i.e., R=1, and its Fermi survival
probability function depends on the age, while in our case
R=10 and the death probability depends on the current num-
ber of deleterious mutations.

Our results reveal that the observation of a mortality pla-
teau using the traditional Penna model with a Fermi-like or
any other death probability function smoother than a step
function is a rather complicated task. For a reproduction age
R>1 most of the individuals die before reaching the mini-
mum reproduction age R. The only way to avoid population
meltdown is to increase the birth rate. Simulations with large
population size and simulation time show a small plateau.
Nevertheless, the high chaotic fluctuations of the population
size due to the large birth rate make the simulations difficult.
However, neglecting genetic deaths before the accumulation
of T deleterious mutations, the model reproduces the Gomp-
ertz law up to old ages where the mortality function shows a
plateau. Additionally, the birth rate does not need to be in-
creased.

In order to avoid neglecting genetic deaths before the ac-
cumulation of 7 mutations, we have used a constant popula-
tion model. Large populations and simulation times also lead
to a clear plateau in the mortality function, which may not
follow the Gompertz law, depending on the value of p. For
small p, many individuals die before reaching the reproduc-
tion age, which may change completely the population age
structure.
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The different approximations of the step function that
have been tested in both the modified Penna model and the
constant population model have led to similar results for old
ages. Thus, we conclude that the effect of the oldest old
results from the smoothness of the genetic death probability
at old ages, within the theory of mutation accumulation.

The existence of plateaus in the mortality curves of
Drosophilae and other organisms is a matter of fact, as re-
ported for instance in [1,15]. However, the number of Droso-
philae surviving up to ages where the plateau appears is ex-
tremely small. This same effect has been observed with
simulations using the constant population model, but not
with the modified Penna model where a reasonable number
of individuals survive until advanced ages. The reason is that
to obtain the plateau with the Penna model, it is necessary to
neglect deaths before the accumulation of 7 mutations,
which allows many individuals to survive up to the minimum
reproduction age. The very small number of individuals
reaching an age to observe a plateau explains the difficulty to
measure the oldest old effect in Nature. Only experiments
with more than a million of Drosophilae yield clear mortality
plateaus, and even so, their statistics still remain quite poor.

Comparing the very small mortality plateau of humans
with the large ones of Drosophilae, medflies, wasps, and
nematodes [ 1] we propose that there is a relation between the
presence of a large mortality plateau and high birth rates,
smooth death probabilities, and the curvature of the popula-
tion age distribution. Organisms with a high death probabil-
ity at young ages need a high birth rate in order to have
sufficient individuals reaching the reproductive age. This
leads to a mortality plateau and a population distribution
with a positive curvature. We suppose that this relation is
valuable for simple organisms. A similar relation between the
mortality plateau and the population age distribution has al-
ready been observed in [16] for butterflies, as well as in [17]
for zebrafish. Unfortunately, more data concerning more
highly developed animals are still missing.
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